If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+16x-9=0
a = 3; b = 16; c = -9;
Δ = b2-4ac
Δ = 162-4·3·(-9)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{91}}{2*3}=\frac{-16-2\sqrt{91}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{91}}{2*3}=\frac{-16+2\sqrt{91}}{6} $
| (5n•9)•2=n | | 2r=6r–8 | | 16-2x=14x | | (5n•9)=•2n | | 3nn=4 | | 7-4m=2 | | 4(-7x-7)=-168 | | 9(r–100)=-72 | | 6-4y/2=4 | | 8n+5–2n=41 | | p+1=(-7)^2 | | 1/4=7/8-m/2 | | 2/8x+6=10 | | 3(4x-5)-2=6x+1 | | v-4/9=2/3 | | -3+2x+2=3 | | 8(5y-2)=5(4+8y) | | 55+220x=1595 | | 6+r=-8-r | | -14-h=4(h+7) | | x*11=6 | | 4x^2+41=-28x | | 3x-5-8x=4x-4 | | 6x+3=x+8=x | | 2(c+4)=5(c+1)-7 | | 2x2−24x+54=0 | | -a/36=-5 | | 2+3x-5=5(×+3) | | 1/3+2/3×m=2/3×m-2/3 | | -a=3a+ | | 4(2r-1=-2(3r+16) | | 10x+4x+6=41 |